Using Bitmap Index for Interactive Exploration of Large Datasets*

Kesheng Wul Wendy Koegler! Jacqueline Cheni and Arie Shoshani'

Abstract

Many scientific applications generate large spatio-
temporal datasets. A common way of exploring these
datasets is to identify and track regions of interest. Usu-
ally these regions are defined as contiguous sets of points
whose attributes satisfy some user defined conditions, e.g.
high temperature regions in a combustion simulation. At
each time step, the regions of interest may be identified
by first searching for all points that satisfy the conditions
and then grouping the pointsinto connected regions. To
speed up this process, the searching step may use a tree-
based indexing scheme, such as a KD-tree or an Octree.
However, these indices are efficient only if the searches
are limited to one or a small number of selected attributes.
Scientific datasets often contain hundreds of attributes
and scientists frequently study these attributesin complex
combinations, e.g. finding regions of high temperature
and low pressure. Bitmap indexing is an efficient method
for searching on multiple criteria simultaneously. We ap-
ply abitmap compression scheme to reduce the size of the
indices. In addition, we show that the compressed bitmaps
can be used efficiently to perform the region growing and
the region tracking operations. Analyses show that our
approach scales well and our tests on two datasets from
simulation of the autoignition process show impressive
performance.

1 Introduction

One method available for scientific data exploration is to
identify and track regions of interest [1, 7, 14]. The goals
areto identify regionsfor further analysisand to visualize
their evolution. In a spatial-temporal dataset, such as the
results from a combustion simulation [5, 6], the physical
phenomena to be studied can be described as a number of
scalar or vector fields on a domain, e.g. temperature and

*This work was supported by the Director, Office of Energy Re-
search, Office of Laboratory Policy and Infrastructure Management,
of the U.S. Department of Energy under Contract No. DE-ACO03-
76SF00098.

TLawrence Berkeley National Laboratory, Berkeley, CA. Email:
{kwu, ashoshani}@lbl.gov.

SandiaNational Laboratories, Livermore, CA. Email: {wkoegle,
jhchen}eca.sandia.gov.

velocity throughout a volume of air. Regions of interest
are then identified as meeting some conditions based on
these properties, e.g. regionsin the volume where the air
isvery hot. Datasets can have hundreds of attributes such
as pressure, concentrations, etc. Regions of interest may
be defined based on any of the attributes in the dataset as
well as combinations of different attributes. A scientist
usually has to explore a number of different conditions
before proceeding to subsequent analysis steps.

The full tracking process, called feature tracking, isil-
lustrated by Silver and Wang [14]. The spatio-temporal
dataset is organized on the top level according to time.
For each time step, snap shots of the fields are recorded.
These fields are usually discretized and recorded as at-
tribute values on grid points or cells. In [14], aregion of
interest was defined to be a connected region where an
attribute is above a specified threshold value. A region
of thistypeis also known as the thresholded region. The
thresholded regions were identified in each time step and
then tracked through time by comparing overlaps of re-
gions from consecutive time steps. An Octree was used
to facilitate the visualization and identification of regions
of interest. Since the Octree is based on a partition of
space, searching for points that satisfy conditions on at-
tribute values typically requires one to examine a large
portion of the tree. For this reason, identifying regions of
interest using an Octree is considered an O(N) process,
where N isthe total number of points. A number of alter-
native approaches scale better, as we shall discuss next.

For visualization purposes, identifying a thresholded
region is equivalent to identifying its boundary. There-
fore, we may choose to use an isocontouring algorithm
to determine the boundary instead of identifying the en-
tire region. There are efficient algorithms for generating
isocontours for visualization. For example, the NOISE
algorithm is shown to have the worst case complexity
of O(V'N + s), where s is the size of the isocontour
[8]. More recent researches have demonstrated that the
optimal complexity of O(s) is achievable with suitable
preprocessing [4, 11]. Although potentially faster than
the thresholded region algorithm [14], isocontouring al-
gorithmsonly identify points on the boundary. Additional
work isrequired to identify all theinterior points.

The process of identifying regions of interest can be di-
vided into two steps. The first step is to identify points

that satisfy the specified conditions and the second step
is to group these points into connected regions. In later
discussions, we refer to thefirst step as the searching step
and the second as the region growing step. After the re-
gions have been identified in each time step, the last step
of feature tracking is to determine the relationship among
the regions between time steps. We refer to this step as
region tracking.

One important limitation of the searching schemes
employed by the thresholded region algorithm [14] and
the isocontouring algorithms [4, 8, 11], is that they are
only designed for regions of interest defined on one at-
tribute. To remove this limitation, a number of multidi-
mensional indexing schemes can be applied to speed up
the search step. For example, Shi and Jgja (2002) ap-
plied a packed Hilbert R-Tree to an earth science dataset
[12]. In database terms, each grid point is a record, and
the spatial coordinates and the associated fields are at-
tributes of the record. The algorithm used by Shi and Jgja
can process multi-attribute conditions. Its time complex-
ity is O(v), where v is the volume of the regions of in-
terest. However, the packed Hilbert R-Tree and most of
the multidimensional indexing schemes either suffer from
the “curse of dimensionality” or are only efficient when
queriesinvolve all attributes. The “curse of dimensional-
ity” refers to the fact that their effectiveness rapidly dete-
riorate as the number of attributesincreases. Most of them
are only useful when the number of attributesissmall, say
< 10.

Most multidimensional indexing schemes reorder the
records according to their attribute values. Although this
reorderingiscrucial to achieve efficient search operations,
it causes the region growing procedures to be very slow.
The reordering of records according to values destroys
spatia relation among the neighbors. Thisrelation essen-
tially has to be recovered during region growing. For ex-
ample, in one study by Shi and Jaja [12], the search step
isquite fast (~ 0.1 seconds), but the region growing step
is much slower (2—4 seconds).

Among the multidimensional indexing schemes, the
bitmap indexing scheme is known to not suffer from the
“curse of dimensionality” and isespecially efficient when
the queries do not involve al of the attributes [9, 19].
More importantly, the bitmap index does not require one
to reorder the records in a particular way, thus we can
keep the records ordered to preserve neighborhood rela-
tion for the region growing step. In this paper, we apply a
compressed bitmap index to the feature tracking problem.
Applying the bitmap index to the searching step is rela-
tively straightforward. The crucia point of this paper is
that the compressed bitmaps can also be used efficiently
for region growing and region tracking. Our complexity
analyses show that we achieve the optimal complexity in

all three steps of the feature tracking process. Tests ontwo
sets of data from an autoignition simulation verified this
conclusion. On a 33 GB dataset, it takes on the average
10 seconds to identify and track regions of interests de-
fined on four different attributes. Even in the worst cases,
it takes less than a minute.

The remaining of this paper is organized as follows. In
Section 2, we review the basic concepts of bitmap index-
ing and give the optimal scheme for the searching step. In
Section 3, we review the compression scheme used and
give the basic reasons that it can perform bitwise logical
operations efficiently. The most important point of this
section is that we can represent regions of interest com-
pactly using O(s) words. Since the optimal bitmap index
allowsusto read only one compressed bitmap to answer a
threshold condition, this searching step has a complexity
of O(s) in both space and time. In Section 4, we dis-
cuss how the region growing process can be implemented
in the same complexity. We also show experimental ev-
idence to support the theory. The region tracking proce-
dure used in our tests is discussed in Section 5. The over-
all performance characteristics of the bitmap based fea-
ture tracking algorithm is discussed in Section 6. In sec-
tion 7, we summarize the current work on uniform grids
and discuss how we may extend the algorithmsto irregu-
lar gridsand adaptive grids.

2 Bitmap indexing

The bitmap index scheme has a long history in the
database field [9, 10, 2]. It is very efficient for data ware-
housing applications where the data records are read-only
and the queries usually produce a large number of data
items [2, 3, 19]. The feature tracking problem is similar
to the data warehousing applications. In both cases, the
data are read-only and the results of queries are usually
large. Another reason for considering a bitmap index is
that it does not require one to reorder the records. We
can ssimply leave the records in the order used in the com-
putational procedure that generated the data. Compared to
thosethat require reordering, it requireslesstimeto create
a bitmap index. In addition, the existing order of records
is well-suited for the region growing and region tracking
steps.

A bitmap index can be considered as a set of precom-
puted answers to some simple conditions. Let X be an
integer attribute with values in the range of 0 to 9. The
range-encoded bitmap index precomputes all answers to
the query of the form “X > p”, where p is an integer
[2, 3]. Let NV denote the number of records, each bitmap
contains N bits of Os and 1s. For the bitmap represent-
ing“X > 17, theith bitis 1 if the attribute X in the ith
record is greater than or equal to 1, otherwisethe bitis 0.

In the bitmap index for X, there are 10 bitmaps each cor-
responding to one distinct value of X, 0to 9. For any user
specified condition of the form “X > p”, to find al the
points satisfying the condition, we only need to read one
of the bitmaps. Clearly, the size of thisbitmap determines
the time and space complexity of this searching step. In
the next section, we discuss the use of compression to re-
duce bitmap sizes. In the remainder of this section, we
discuss how to deal with continuousvalues and conditions
involving multiple attributes.

A bitmap index is usually defined for one attribute,
however it is easy to process conditions involving more
than one attribute. For example, with two range-encoded
bitmap indices for both X and Y, to answer the query
“X >p,andY > p,” onesimply usestheindicesfor X
and Y to first get the partial solutionsto “X > p,” and
‘Y > p,”, and then performs a bitwise AND operation
on the two partial solutions.

The bitmap indexing scheme can also be used for at-
tributes with continuous values. In scientific applications,
these attributes are typically represented as floating-point
values. The most straightforward option is to build one
bitmap for each distinct value. This option ensures that
all possiblethreshold conditionscan be answered by read-
ing one bitmap, however, it may generate a compressed
bitmap index that is larger than a B-tree index. To reduce
the size of the bitmap index, we usually bin the floating-
point values [13, 18]. For example, assuming an attribute
Z can be of any real value between zero and one, we
may build a range-encoded bitmap index for the follow-
ing set of conditions, 7 > 0, Z > 0.1, Z > 0.2, ...,
Z > 0.9. This corresponds to having 10 bins with bin
boundaries0, 0.1, and so on. Inthiscase, the performance
of searching step depends critically on the selection of the
bin boundaries. For example, if the thresholdis0.85, i.e.,
the query condition is Z > 0.85, all records satisfying
Z > 0.9 definitely satisfy the query condition, but all the
records satisfying Z > 0.8 but not Z > 0.9 have to be
examined. If commonly used conditionsinvolving an at-
tribute are known, it is possible to devise an set of optimal
boundaries to minimize the number of records to be ex-
amined. In the cases where a scientist is expected to use
the system, there are certain heuristicsfor maximizing the
chance that a user query fals on a bin boundary. For ex-
ample, a scientist is more likely to enter a condition like
“Z > 0.1"than“Z > 0.1001", unless of course 0.1001
happens to have special meaning in the particular appli-
cation. In the autoignition datasets, most of the attributes
have real values and the bin boundaries are typically of
theform 108,2 x 1078,...,1077,2 x 10~7, and so on.

In general, users can select their own preferred bin
boundaries when creating the bitmap indices. By select-
ing bin boundaries that fit a specific application, con-

ditions involved in identifying thresholded regions can
be answered by retrieving one bitmap from a bitmap
index. This process is expected to take O(N) space
and O(N) time. However, it can be significantly re-
duced if the bitmaps are compressed. Most of the com-
monly used bitmap compression schemes are based on
run-length encoding. If the physical problem has conti-
nuity in space, then preserving the neighborhood relation
among the records tend to also improves the compress-
ibility of the bitmaps. For a simple threshold conditionon
one attribute, we can show that the size of the compressed
bitmap is O(s), where s is the size of the boundaries of
the thresholded regions.

3 Bitmap compression

As mentioned in the previous section, compression is
the crucial technique that reduces the complexity of the
search operations when using the bitmap index. In this
section, we demonstrate that on a uniform grid, the com-
pressed bitmap size is proportional to the size of the
boundaries of the regions of interest, i.e., O(s). To find
thresholded regions using a range-encoded bitmap index
we simply retrieve an appropriate bitmap from the bitmap
index. If the size of this bitmap is O(s) bytes, the com-
plexity of the search operationis theoretically comparable
to the best algorithm for identifying the boundaries (iso-
contour) of these regions. The following analyses are for
3D uniform gridsand theillustrationsuse a 2D grid.

On a uniform 3-D grid, each grid point can be marked
with itsindices along z, y, and z directions, i, 7, and k.
A simple way of ordering these grid points is the raster
scan ordering. Let the grid size be n, x n, x n, and
theindices ¢, j, and k go from 0 to n -1, ny-1 and n.-1
respectively. The global index of agridpoint at (i, 7, k) is
i+j*ng +k*ng*n, using theraster scan order. A number
of connected regions can be recorded by marking whether
a point belongs to one of the regions. Using the bitmap
index, the solution from the searching step is a bitmap of
N bits where the points inside the regions of interest are
marked with 1.

Let's define the order lineto be aline going through all
the grid pointsin order O, 1, ..., N — 1. The boundary
of the regions will cut the order line into many line seg-
ments. A segment that contains grid points within the re-
gionscorresponds to agroup of 1sin the bitmap. A group
of consecutiveidentical bitsiscalled afill. A fill withonly
Os is caled a O-fill and a fill with only 1sis called a 1-
fill. The O-fills correspond to line segments outside of the
regions of interest and the 1-fills correspond to line seg-
ments inside the regions. If the points of the regions fall
on s; line segments, the bitmap representing the regions
contains no more than s; 1-fills separated by no more s;-1

outline of the region
line segments
o

8
7
6
5 order
4 line
3
2
1
ji=0
Figure1: A 2-D regular grid (11 x 9).
outline of the region
line segments
A
order
— line

o P N W A O N ©
<

Figure2: A 2-D regular grid (11 x 9) partitioned into four
blocks.

O-fills. There might be two additional O-fills, one at the
beginning and one at the end of the bitmap. Altogether
there is a maximum of 2s;+1 fills. Using run-length en-
coding, each fill can be represented in one word. A total
of at most 2s;+1 words may be used. Many of the com-
monly used bitmap compression schemes are based on
run-length encoding, therefore using one of these schemes
the compressed bitmap should use O(s;) words. Figure 1
shows an example of a 2-D grid. Only one connected re-
gionis shown, but it is not a convex region. In this exam-
ple, there are eight line segments, s; = 8, and 17 fillsin
the bitmap representing the region. Run-length encoding
of thisbitmap is shown in Figure 3.

To improve the efficiency of logical operations on the

Figurel 26*0,3*1,6*0,2*1, 2*0, 1*1, 6*0, 3*1,
1*0, 1*1, 6*0, 5*1, 7*0, 4*1, 8*0, 3*1,
150

16*0, 2*1, 2*0, 2*1, 4*0, 3* 1, 11*0,
1*1, 4*0, 1*1, 4*0, 1*1, 6*0, 4*1, 3*0,
3*1,4*0, 21, 6*0, 1*1, 4*0, 1*1, 4*0,
1*1,9%0

Figure 2

Figure 3: Run-length encoding of the bitmaps represent-
ing the regions shown in Figures 1 and 2.

Figurel 0000001C 0640E81F
OOFOOEOQO 00000000
Figure2 0000661C 0021081E
1C302108 00000000

Figure 4: The Word-Aligned Hybrid (WAH) encoding of
the bitmaps representing the regions in Figures 1 and 2.
Code words are expressed as hexadecimal digits. In both
cases, the last word contains only six useful bits.

compressed bitmaps, we use acompression scheme called
the Word-Aligned Hybrid (WAH) code [15, 16, 17]. The
WAH scheme differs from the basic run-length encoding
in two ways. First, it only records long groups of Os or
1s using run-length encoding, the short groups are repre-
sented literally. Second, it requiresthe groupsto be of cer-
tain size so that operations on the compressed data are effi-
cient. If aword contains 32 bits, WAH first groupsthe bits
of a bitmap into 31-bit groups. Consecutive groups with
only Os or 1sare encoded in one word called thefill word.
The remaining groups are represented literally, where the
31 bits plus a flag bit are stored in a 32-bit word. In the
worst case, the 2s;+1 fillsmight take 4s;+3 wordsin WAH
because each fill may turn into one literal word plus a fill
word and the last few (N modulo 31) bits require a word
to store. Typically, it takes less space than run-length en-
coding scheme, especially if many of the groupsare small.
For the example shown in Figure 1, WAH encodes all bits
inliteral words and only four words are needed instead of
17. The WAH compressed version is shown in Figure 4.
In this case, there are only six useful bitsin the last word.

We say agrid point in aregion is exposed if one of its
neighbors on the grid is outside of the region. We de-
fine the boundary size s of a region to be the number of
points exposed. For most line segments, only their two
end points are exposed. This suggests that the boundary
size is about twice the number of line segments, s ~ 2s;.
The example shown in Figure 1 has 16 points exposed to
the outside while it has eight line segments. A line seg-
ment can have more than two points exposed if the whole

or part of the line segment is exposed. For example, the
line segment with j = 2 in Figure 1 has three exposed
grid points. It may contribute less than two points if it
has only one point. For regions with complex outlines,
we would expect s to be dlightly greater than 2s;. A con-
nected region with many single-point line ssgments along
thex-axisshould berare. In short, an algorithm with com-
plexity of O(s;) also has a complexity of O(s).

The datasets we used were computed on a parallel ma-
chine and their grids were distributed to many processors,
one piece of the grid, or a block, to each processor. In
this case, the points and the blocks form a two-level grid.
Within each level, the points are numbered in the raster
scan order, see an illustration in Figure 2. This makes
the order line more complex and increases the number of
line segments inside a region, and therefore increase the
size of the compressed bitmaps. The region and the grid
shown in Figure 2 are exactly the same as shown in Fig-
ure 1, except that the domain has been partitioned into
four nearly equal-size blocks. By partitioningthe gridinto
four blocks, the number of line segments increases from 8
to 12. In the bitmap, the number of fillsincreases from 17
to 25. We may reduce the size of the bitmaps by reorder-
ing the grid points to follow the simple raster scan orde,
however we are not sure whether the extra preprocessing
time isworthwhileat thistime.

Logical operations on WAH compressed bitmaps can
work directly on the compressed data and generate com-
pressed answers. Because of this, the time to perform
these operations is proportional to the sizes (bytes) of the
bitmapsinvolved [15, 16, 17]. Proving thisin detail isbe-
yond the scope of this paper; the following example illus-
trates the main points of the proof. Let A be the bitmap
representing the region shown in Figure 2 and B be the
bitmap representing a region the occupying the first block
only. The two compressed bitmaps are shown in Figure 5.
The last words for both bitmaps contain six 0 bitsand are
not shown to save space. In B, the 62 0-bit in the mid-
dieisrepresented by a WAH codeword 80000002. The
first bitis 1, indicating it is afill word. The second bit is
0, indicating al the bits of the fill are 0. The remaining
30 bits contains the integer 2, indicating the fill consists
of 2 31-bit groups. In other word, the fill is 62 bits long.
The procedures to perform bitwise logical operation can
directly read these code words and generate code words of
theresults. In general, to generate one word of aresult, at
least one word of the two operands is consumed. For in-
stance, the first code word of A& B is generated by using
the bitwise AND operator on the first code words from A
and B. One word from A and one word from B are con-
sumed in this case. The second code word in A& B isthe
same as that of B because itis afill of 0 bits. Thereisno
need to examine the two corresponding code words of A.

A 0000661C 0021081E 1C302108
B 7FFFFFFE 80000002

A&B 0000661C 80000002

A|B T7FFFFFFE 0021081E 1C302108

Figure5: Examples of bitwiselogical operationson WAH
compressed bitmaps.

In this case, one word from B and two wordsfrom A are
consumed to generate one word of the result. If there are
n4 wordsin A and n g wordsin B, in theworst case, abit-
wiselogical operation may generate n 4 +np wordsinthe
result. Because of this linear relation, bitwise logical op-
erations on WAH compressed bitmaps have the potential
to outperform the same operations on the uncompressed
bitmaps. Our earlier tests demonstrated that thisisindeed
the case [15, 16, 17]. Overadl, using the WAH compres-
sion scheme not only reduces the storage requirement, but
also improves the computational efficiency.

An additional benefit of using WAH compression is
that we can generate the bitmap indices efficiently. Using
WAH compression, itispossibleto only insert bitsthat are
1 when creating a bitmap index. In most cases, we found
that generating the (equality encoded) bitmap index! has
the computational complexity of O(N log(b)), where b
is the number of bitmaps generated. This is significantly
better than the complexity of generating an uncompressed
bitmap index, O(Nb). It is aso better than multidi-
mensional indexing schemes that require sorting. These
schemes have a complexity of at least O(N log(N)).

4 Region growing

The searching step generates a bitmap representing all
grid points satisfying the specified conditions. In previ-
ous sections, we have shown that this bitmap can be pro-
duced and stored efficiently. For visualization purposes,
we need to produce the boundaries of all connected re-
gions. On uniform grids, the beginning and the end of ev-
ery group of 1smust correspond to the two end pointsof a
line segment in the regions of interest. If the user does not
demand a high quality border or the grid is fine enough,
simply displaying these end positions might be sufficient.
However, to display a smooth boundary, we need to de-
termine the points that are exposed and their neighbors
outside so that we can perform the necessary interpola-
tion. Thiswould require us to associate each grid point to
a connected region. A straightforward approach is likely

1The range-encoded bitmap index can be generated from the equality
encodedindex by b — 1 bitwise OR operations. Our observation is that
the logical operation time is much smaller than the time to generate the
equality encoded index.

to yield an algorithm with complexity of O(v) because it
has to work on each grid point [12]. However, on uniform
grids, we can directly work with the line segments instead
of working with each individual grid point. This reduces
the complexity of the region growing step to O(s).

For data involving uniform grids, converting a com-
pressed bitmap into lists of line segments is a straight-
forward task. This work involves visiting every word that
represents 1s, converting the global index of the first 1
into its 4, j, k& coordinates, and determining the number
of 1sthat follow. Since the number of words containing
1sis proportional to the number of line segments, s, this
conversion process has a time complexity of O(s;). As
we decode the compressed bitmap, the line segments are
discovered in order of j and &, and can be used in the
following comparisons without any additional work.

After the line segments are identified, the next task is
to generate a list of pointers to these segments for each
connected region. This process can go according to the
indices j and k. For each grid line defined by (4, k),
we need to compare the line segments on it against those
on (j-1, k) and (5, k-1) and possibly (j-1, k-1) depend-
ing on the definition of neighbors. Because the line seg-
ments along each (j, k) are ordered and do not over-
lap, determining whether two segments from (5-1, k) and
(4, k) are connected requires at most two comparisons.
Let s;,, be the number of line segments on grid line (7,
k), then the number of comparisons required to identify
whether segments on line (5, k) are connected to seg-
ments on line (j-1, k) is proportional to s, + Sj—1 k.
This operation is repeated for two other lines. The over-
all complexity of matching segment on line (5, k) is
O(3Sj,k—|—Sj_1,k—|-8j,k_1—|—Sj_1’k_1). Sinces; = Zsj,k'
the overall complexity of grouping line segments into con-
nected regionsis O(s;).

While comparing line segments from different grid
lines, we can also determine what part of a line segment
is exposed to the outside. Thisis a fixed amount of work
each time two line segments are compared. Therefore
this does not change the complexity of the region grow-
ing algorithm. Displaying the positions of all the exposed
points should produce a better boundary than simply dis-
playing the end points of the line segments. However, if
thisis still insufficient, we may further generate a smooth
boundary throughinterpolation. Thisrequiresonetoiden-
tify the outside neighbors of the exposed points and per-
form interpolation. This additional work is also linear in
the number of grid points exposed. Therefore, displaying
a smooth boundary aso requires O(s) time.

In preparation for the feature-tracking step, we convert
the lists of line segments back to compressed bitmaps. In
thiscase, each bitmap represents the grid pointsbelonging
to one connected region. We have implemented a proce-

0.015

o
o
=

region growing time (sec)
<)
o
o
a1

4000 6000 8000 10000

number of line segments

a) 600 x 600 grid (partitioned into 32 blocks)

0 .
0 2000 12000

0.03

0.025¢

o
o
]

region growing time (sec)
o
o
=
(%2

0.01f
0.005
0
0 0.5 1 15 2 25
number of line segments % 10°

b) 1344 x 1344 grid (partitioned into 256 blocks)

Figure 6: Time used by the region growing procedure
plotted against the number of line segments in each test
case. Each test case is shown as a green point, the red
lines are based on linear regression.

durethat takes O(s;) time. The size of abitmap is propor-
tional to the number of line segments it represents. Since
the region growing step does not change the number of
line segments, the total size of the compressed bitmaps
produced is about the same as the size of the input bitmap,
i.e, their total sizeis O(s;).

Overall, the region growing process takes one bitmap
and generates a number of bitmaps, one for each con-
nected region. Most of the steps in this process have
a complexity of O(s;) and others have a complexity of
O(s). Since s ~ 2s, the total time complexity is O(s)
and so isthe memory size requirement.

To verify that the time required by the region growing
procedure is proportional to the number of line segments,
we have collected timing results from a large number of
different test cases (see details in Section 6). The results

are plotted in Figure 6. We observe that the points fall
close to the regression lines. Given that time reported is
wall-clock time and the figure contains more than 66,000
test cases on two sets of autoignitiondata, it isremarkable
that there are so few outliers. Also note that the datasets
use distributed grids, see Figure 2. This verifies that the
linear relation holds for nontrivial grids. Another impor-
tant observation is that the slopes of the two regression
lines are remarkably similar, 10-6 and 1.25 x 105, even
though the two grids are significantly different in size.
Thisindicates that the coefficientsin the linear relation do
not depend on the grid size and that the time complexity
of the region growing algorithmisindeed O(s;).

5 Region tracking

When analyzing a spatio-temporal dataset, one important
task is to track the evolution of the regions of interest
in time [14]. One common approach is to determine the
correspondence among the regions from the neighboring
time steps based on the spatial overlap of regions. The
most time consuming part of this process is the compu-
tation of overlaps. Let v; and v, denote the volumes
of two regions to be compared. The straightforward ap-
proach of comparing every pair of pointshas the complex-
ity of O(vyv2). Given that we represent each region as a
compressed bitmap, for uniform grids, computing over-
lap is equivalent to counting the number of 1sin the re-
sult of a bitwise AND operation between two bitmaps.
Let s; and so denote the boundary sizes of the two re-
gions, the sizes of the compressed bitmaps are O(s;) and
O(s2). Since we can directly operate on the compressed
bitmaps, the complexity of the bitwise logical operation
isO(s1 + s2). The result of thisis also compressed and
itssize isaso O(s; + s2). Because WAH is a simple
compression scheme, counting the number of 1sisalin-
ear operation. Overall, computing overlap between two
regions has a complexity of O(s; + s2) both in space and
in time. Given that the regions are represented in O(s;)
and O(sy) bytes, computing the overlap in O(s1 + s2)
time and space is optimal because one must examine ev-
ery byte representing the two regions to determine their
overlap.

In our test software, we use the overlaps to define a
global identifier (an integer) for each connected region
[7]. Atthefirst time step, the regions are arbitrarily num-
bered. The regions of time step p are compared to the
regions of time step p-1, a region in the later time step
takes on the number of the region that it has the maximal
overlap with; a region that does not overlap with any in
the previoustime step is again numbered arbitrarily. This
isavery simpleregion tracking algorithm. The purpose of
thistest isto demonstrate that the bitmap based approach

data index create

gridsize time size size index
steps (MB) (MB) (sec)

600 x 600 69 795 495 621
1344 x 1344 335 19,364 3,351 6,912

Figure 7: Basic information about the compressed bitmap
indices on eight attributes of the autoignition data.

can compute the overlaps efficiently.

In previous sections, we have compared our approach
with the isocontouring algorithm. Most isocontouring al-
gorithms cannot be used easily for region tracking be-
cause they do not provide information about the interior
of the regions. However, our approach can handle fea-
ture tracking with ease because a compressed bitmap isa
compact representation of all pointsin the regions.

A byproduct of our region growing algorithm is that
it can produce bounding boxes easily. These bounding
boxes can be used to reduce the overall region tracking
cost since we only need to compute the overlap of regions
whose bounding boxes overlap.

6 Performanceon autoignition data

This work was motivated by a need to efficiently analyze
the datasets produced from a direct numerical simulation
of hydrogen-oxygen autoignition process [5, 6]. We have
applied our bitmap indexing softwareto identify and track
the regions of interest on two datasets from this applica-
tion. We report some timing results next.

Two sets of data have been used to test the program.
Both sets are produced on 2D models and both are pro-
duced on uniform grids partitioned into a number of
blocks. The smaller dataset usesa 600 x 600 grid and con-
tains 69 time steps. The larger dataset usesa 1344 x 1344
grid and contains 335 time steps. Figure 8 shows the re-
gionsof interest from two different time steps of thelarger
dataset. The outlinesare labeled using the region tracking
algorithm described in the previous section.

For our performance test, we used randomly generated
conditions on eight chemical species involving hydrogen
and oxygen. We built indices for these eight attributes.
The indices built were the range-encoded bitmap indices
and 100 binswere used for each attribute. Thetotal size of
the indices and the time needed to create them are listed
in atablein Figure 7. In this table, the data size refers
to the total size of the eight attributes indexed, not the
total size of al attributes. The total size of the smaller
dataset is about 1.6 GB and the larger one is about 33
GB. Without compression, the bitmap index sizes would

Figure8: Regionsof interest (HO; > 10~7 on HO, back-
ground) at selected time steps.

be more than three times of the size of the original data,
which is close to the sizes of B-tree indices on the same
set of attributes. However, the sizes of our compressed
indices are significantly smaller than the data sizes.

The timing results reported in Figure 7 are wall clock
time measured on a Sun e-450 machine. It uses an Ultra-
SPARC Il CPU with a clock rate of 450 MHz and 4 GB
of memory. The files reside on a disk suite including five
disks. We can usually expect about 20 MB/s throughput
from the disk system. The index creation time should be
linear inthe data size. However, because the larger dataset
produced relatively smaller compressed bitmaps, thetime
needed to create indices for the larger dataset was only 11

1-attribute
+ 2-attribute |
A 3-attribute ||
4-attribute ||
A a7

w
5

search time (sec)
N
[

N
™

1.5f

%o 25 50 55 60 65 70
a) 600 x 600 grid, 69 time steps

40 T
- l-attribute
35} + 2-attribute
A 3-attribute
30b A-attribute

N
[¢)]

search time (sec)
= N
1 o

=
o
T

[4)]

200 250 300
b) 1344 x 1344 grid, 335 time steps

0
150 350

Figure 9: Search time used by the compressed bitmap in-
dexing scheme to answer queriesinvolving different num-
ber of attributes. Each test case is shown as a symbol in
the plot, the lines with the same color as the symbols are
based on linear regression.

times that of the smaller dataset even though their sizes
differ by afactor of about 25.

Figure 9 shows the time used by the search step. The
time reported is the time used to search through &l the
time steps in a dataset. More than 200 tests were per-
formed on each dataset?. To reduce clutter, only test cases
that require more than one second on the smaller dataset
and five seconds on the larger dataset are shown. The hor-
izontal axes in the figures are the number of time steps
containing nonempty regions of interest. The tests are
conducted using conditions of the form “X > aand Y

20n thelarge dataset, since each test is applied to all 335 time steps,
this generatesatotal of more then 66,000 test casesfor the region grow-
ing procedure

a) 600 x 600 grid, 69 time steps

#att search grow track
1 106 022 0.02
2 167 017 0.01
3 212 014 o0.01
4 262 014 o0.01

b) 1344 x 1344 grid, 335 time steps

#att search grow track
1 571 205 012
2 739 124 012
3 892 058 011
4 1030 047 0.10

Figure 10: The average time (seconds) of different ran-
dom tests.

a) 600 x 600 grid, b) 1344 x 1344 grid,

69 time steps 335 time steps
#att search total #at search tota
1 191 251 1 1941 26.72
2 370 3.82 2 20.33 26.08
3 398 4.13 3 2268 2342
4 462 477 4 3530 3595

Figure 11: The test cases that used the maximal amount
of total time (seconds).

> b” by randomly selecting the attributes and the thresh-
old values. The linear regression lines are presented not
to suggest a linear relation, but merely to guide the com-
parisons among the queries involving different numbers
of attributes.

Figure 10 shows the average time used by the three
steps of feature tracking: searching, region growing and
region tracking. In most test cases, the time required by
the search step isa factor of 5-10 larger than thetime re-
quired by the region growing step which isin turn about a
factor of 5-10 larger than the time required by the region
tracking step. This is dramatically different from perfor-
mance data reported in the literature [12] where the re-
gion growing time is 2040 times that of searching time.
This is because the bitmap indexing scheme allows the
data to be in an order that is efficient for region growing.
Most other multidimensional indexing schemes do not al-
low this option.

As the number of attributes in a query increases, the
searching time generally increases. We expect the aver-
age search time to be proportional to the total index size.
The total size of indicesfor the larger dataset is about 6.7
times that of the smaller one. The average search times
only differ by afactor of about 5. Thisis close to what we

record oriented 75
atributeoriented 5

Figure 12: Time (seconds) used to search the smaller
dataset without an index.

expected. The times required by the region growing step
and the region tracking step decrease as the number of
attributesin a query increases. Thisis because the condi-
tions involving more attributes typically produce smaller
regions of interest.

Figure 11 shows the maximum time used by the ex-
treme test cases. The total time is less than 40 seconds
in al test cases on the large dataset. Much of this time
is spent in waiting for the disk system to respond to read
requests.

For a typical thresholded region defined on one at-
tribute, the search step on the smaller dataset takes less
than two seconds and the search step on the larger one
takes less than 20 seconds. As more attributes are spec-
ified, the worst-case time grows slower than linear. For
example, for regions of interest defined on four attributes,
it takes less than five seconds on the smaller dataset and
less than 40 seconds on the larger dataset; see Figures 9
and 11.

Figure 12 liststhe time required to perform the search-
ing step using the most naive algorithms on the smaller
dataset. Clearly, these naive algorithms take more time
than the numbers presented in the Figures 10 and 11. De-
pending how the data is organized the searching time is
different. If datais organized in a record oriented fashion
likeinarelational database system, to search one attribute
effectively requires one to read all pages. The aterna-
tiveisto organize the data in an attribute oriented fashion,
i.e., all values of an attribute are together on consecutive
pages. This strategy is suitable for read-only data and is
more efficient for feature tracking. In this case, it requires
about 5 seconds to perform the searching step without an
index. Since the average search step takes about one sec-
ond with the compressed bitmap index, there is a saving
of about four seconds. From Figure 7, we see that gener-
ating one bitmap index for the smaller dataset takes about
77.6 (621/8) seconds. It would take about 20 queries for
the savings of using the bitmap index to equal to the time
needed to create the index. Building the bitmap indices
may not be worthwhile if the data is only searched a few
times.

7 Summary and futurework

In this paper, we reported a set of compressed bitmap
based techniques for feature tracking. The bitmap in-

dex is known to be efficient for searching read-only data
like those in feature tracking problems. In this paper,
we demonstrate that compressed bitmaps can al so be effi-
ciently used to perform region growing and region track-
ing tasks. On uniform grids, our bitmap based approaches
for region growing and region tracking are theoretically
optimal. Our tests on two sets of autoignition data con-
firm their efficiencies. On a 33 GB dataset, the worst test
case takes less than a minute to process complex condi-
tionsinvolving four different attributes. On the average it
only took about 10 seconds.

We have shown that our agorithm for identifying re-
gions of interests has the same theoretical complexity as
the optimal isocontouring algorithm. However, because
isocontouring algorithms can not be directly used in fea-
ture tracking, we did not actually implement any isocon-
touring agorithm. It would be interesting to actually im-
plement one of them and compare the execution time.

We might be able to improve the performance of the
feature tracking process by reordering the grid points so
that the grid is not partitioned into block. This should re-
duce the size of the bitmap indices and the space require-
ment during feature tracking. However, since the compu-
tational procedure produces data in blocks, the overhead
of reordering them may be too high. We need to study this
in the future.

In this paper, both the analyses and the test data are for
uniform grids. However, the algorithms used can be ex-
tended. For example, the region growing algorithm can
be applied to any regular grid including the nonuniform
regular grid and the rectilinear grid without affecting the
complexity (O(s)). The searching step using bitmap in-
dex can be applied on any kind of grid, but the size of the
compressed bitmap representation for a connected region
is highly dependent on the order of the grid points. The
algorithms may also be adopted to AMR (Adaptive Mesh
Refinement) meshes. However, more work is required to
implement and to verify the approaches.

The compressed bitmap is a compact representation for
line segments. On 3D grids, working with rectangles or
cubes could be more efficient than working with line seg-
ments. Developing a compact data structure for these ge-
ometric objects might further enhance the overall perfor-
mance of feature tracking programs.

References

[1] C. Bajgj, A. Shamir, and B.-S. Sohn. Progressive track-
ing of isosurfacesin time-varying scalar fields. Technical
Report TR-02-4, CS & TICAM, University of Texas at
Austin, 2002.

[2] C.-Y.ChanandY. E. loannidis. Bitmap index designand
evaluation. In SGMOD 1998. ACM press, 1998.

10

[3] C.Y.ChanandY. E. loannidis. An efficient bitmap en-
coding scheme for selection queries. In SGMOD 1999.
ACM Press, 1999.

[4] P Cignoni, C. Montani, E. Puppo, and R. Scopigno. Op-
timal isosurface extraction from irregular volume data. In
Volume Visualization Symposium, pages 31-38, 1996.

[5] T. Echekki and J. H. Chen. Direct numerical simulation of
autoignition in non-homogeneous hydrogen-air mixtures,
2003. to be published in Combustion and Flame.

[6] H.G.Im, J H. Chen, and C. K. Law. Ignition of hydro-
gen/air mixing layer in turbulent flows. In Twenty-Seventh
Symposium (International) on Combustion, The Combus-
tion Institute, pages 1047—-1056, 1998.

[7] W. Koegler. Case study: Application of feature tracking
to analysisof autoignition simulation data. In |EEE Visu-
alization’ 01, pages 461464, 2001.

[8] Y. Livnat, H. W. Shen, and C. R. Johnson. A near opti-
mal isosurface extraction algorithm for structured and un-
structured grids. |EEE Transactions on Visualization and
Computer Graphics, 2(1):73-84, 1996.

[9] P. O'Neil. Model 204 architecture and performance. In

2nd International Workshop in High Performance Trans-

action Systems, Asilomar, CA, volume 359 of Lecture

Notesin Computer Science, pages40-59, Sept. 1987.

P.O’'Neil and D. Quass. Improved query performancewith

variant indices. In SGMOD 1997, pages 38-49. ACM

Press, 1997.

H. W. Shen, C. D. Hansen, VY. Livnat, and C. R. John-

son. | sosurfacing in span spacewith utmost efficiency (IS

SUE). In IEEE Visualization ‘96, pages 287—294, 1996.

Q. Shi and J. F. Jgja. Efficient techniquesfor range search

querieson earth sciencedata. In SSDBM 2002, pages142—

151. IEEE Computer Society, 2002.

A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and

A. Sim. Multidimensional indexing and query coordina-

tion for tertiary storage management. In SSDBM 1999,

pages 214-225. |EEE Computer Society, 1999.

D. Silver and X. Wang. Tracking and visulizing turbulent

3D flow. |EEE Transcations on Visualization and Com-

puter Graphics, 3(2):129-141, 1997.

K. Wu, E. J. Otoo, and A. Shoshani. A performance com-

parison of bitmap indexes. In CIKM 2001, pages559-561.

ACM, 2001.

K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap

indexes for faster search operations. In Proceedings of

SSDBM'’ 02, pages 99108, 2002. LBNL-49627.

K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes

on design and implementation of compressed bit vectors.

Technical Report LBNL/PUB-3161, Lawrence Berkeley

National Laboratory, Berkeley, CA, 2001.

K.-L. Wu and P. Yu. Range-based bitmap indexing for

high cardinality attributes with skew. Technical Report

RC 20449, IBM Watson Research Division, Yorktown

Heights, New York, May 1996.

M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing

for datawarehouses. In ICDE 1998, pages220-230. | EEE

Computer Society, 1998.

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

